organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Methoxybenzaldehyde (phthalazin-1ylidene)hydrazone

Ray J. Butcher,^a Jerry P. Jasinski,^b* H. S. Yathirajan,^c A. M. Vijesh^d and B. Narayana^d

^aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India Correspondence e-mail: jjasinski@keene.edu

Received 20 July 2007; accepted 28 July 2007

Key indicators: single-crystal X-ray study; T = 203 K; mean σ (C–C) = 0.002 Å; R factor = 0.057; wR factor = 0.180; data-to-parameter ratio = 22.9.

The title compound, $C_{16}H_{14}N_4O$, crystallizes with two independent molecules in the asymmetric unit. The phthalazin-1-yl and 4-methoxybenzaldehyde groups are coplanar with each other in each of the independent molecules with angles between their mean planes of 15.4 (4) and 13.3 (9)°. The crystal packing is stabilized by intermolecular N $-H\cdots$ N hydrogen bonding between inverted phthalazin-1-yl groups allowing the independent molecules to be stacked in groups oblique to the ab plane in a zigzag pattern.

Related literature

For related structures, see: Lynch & McClenaghan (2002*a*,*b*). For related literature, see: El-Masry *et al.* (2000); Pandey *et al.* (1999); Singh & Dash, 1988; Hodnett & Dunn, 1970; Desai *et al.* (2001); Aydogan *et al.* (2001); Taggi *et al.* (2002).

Experimental

Crystal data

$C_{16}H_{14}N_4O$	a = 12.1351 (8) A
$M_r = 278.31$	b = 14.2016 (7) Å
Monoclinic, $P2_1/c$	c = 16.0716 (8) Å

$\beta = 90.012 \ (6)^{\circ}$	
$V = 2769.7 (3) \text{ Å}^3$	
Z = 8	
Mo Ka radiation	

Data collection

Oxford Diffraction Gemini R	19111 measured reflections
diffractometer	8720 independent reflections
Absorption correction: multi-scan	3864 reflections with $I > 2\sigma(I)$
(CrysAlis RED; Oxford	$R_{\rm int} = 0.035$
Diffraction, 2007)	2 standard reflections
$T_{\min} = 0.833, T_{\max} = 1.000$	every 50 reflections
(expected range = 0.806–0.968)	intensity decay: none
Refinement	

 $\mu = 0.09 \text{ mm}^{-1}$ T = 203 K

 $0.55 \times 0.41 \times 0.37 \text{ mm}$

$R[F^2 > 2\sigma(F^2)] = 0.057$	381 parameters
$wR(F^2) = 0.180$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
8720 reflections	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	Н…А	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2A - H2AA \cdots N1B$ $N2B - H2BA \cdots N1A$	0.87	2.36	3.0451 (19)	136
	0.87	2.36	3.0466 (19)	136

Data collection: *CrysAlisPro* (Oxford Diffraction, 2007); cell refinement: *CrysAlisPro*; data reduction: *CrysAlisPro*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *WinGX* (Farrugia, 1999); software used to prepare material for publication: *WinGX*.

AMV thanks SeQuent Scientific Ltd, Mangalore, India, for the sample of the starting material, 1-hydrazinophthalazine. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2185).

References

- Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.
- Desai, S. B., Desai, P. B. & Desai, K. R. (2001). *Heterocycl. Commun.* 7, 83–90.
 El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). *Molecules*, 5, 1429–1438.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.
- Lynch, D. E. & McClenaghan, I. (2002a). Acta Cryst. C58, 0642-0644.
- Lynch, D. E. & McClenaghan, I. (2002b). Acta Cryst. E58, o1051-o1052.
- Oxford Diffraction (2007). *CrysAlisPro* (Version 171.31.8) and *CrysAlis RED* (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Pandey, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). *Il Farmaco*, **54**, 624–628.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.
- Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.

Acta Cryst. (2007). E63, o3674 [doi:10.1107/S1600536807037051]

4-Methoxybenzaldehyde (phthalazin-1-ylidene)hydrazone

R. J. Butcher, J. P. Jasinski, H. S. Yathirajan, A. M. Vijesh and B. Narayana

Comment

Schiff bases are used as substrates in the preparation of number of industrial and biologically active compounds *via* ring closure, cycloaddition and replacement reactions. Moreover, Schiff bases are also known to have biological activities such as antimicrobial, antifungal, and antitumor, as well they can be herbicides. Schiff bases have also been employed as ligands for complexation of metal ions. On the industrial scale, they have wide range of applications such as dyes and pigments. A new Schiff base, $C_{16}H_{14}N_4O$, (I), has been synthesized and its crystal structure is reported herein.

Two independent molecules of (I), molecules A and B, Fig. 1, comprise the crystallographic asymmetric unit. The phthalazin-1-yl and 4-methoxybenzaldehyde groups are coplanar with each other in each of the independent molecules with an angle between their mean planes of 15.4 (4) and 13.3 (9) Å in A and B, respectively. These groups are also planar with the hydrazone group, forming torsion angles of N4—N3—C8—N2 [1.8 (2)°] and N4—C9—C10—C11 [14.1 (2)°] for molecule A, and N4—N3—C8—N2 [-6.1 (2)°] and N4—C9—C10—C11 [-2.7 (2)°] for B.

Molecules A and B are linked by intermolecular N—H···N hydrogen bonding interactions (Table 1) between inverted phthalazin-1-yl groups. These stack diagonal to the *a* axis in a zigzag pattern (Fig. 2).

Experimental

A mixture of 1-hydrazinophthalazine (0.32 g, 0.002 mol) and 4-methoxybenzaldehyde (0.272 g, 0.002 mol) in absolute ethanol (15 ml) containing 2 drops of 4 *M* sulfuric acid was refluxed for about 3 h. On cooling, the solid separated was filtered and recrystallized from acetone (m.p. 419–23 K). Analysis found: C 68.93, H 5.01, N 20.04%; $C_{16}H_{14}N_4O$ requires: C 69.05, H 5.07, N 20.13%.

Refinement

The H atoms were included in the riding model approximation with C—H = 0.94 Å and N—H = 0.87 Å, and with $U_{iso}(H)$ = 1.18–1.49 $U_{eq}(C,N)$.

Figures

Fig. 1. Molecular structure of the two independent molecules in (I), showing atom labelling, 50% probability displacement ellipsoids and N—H…N hydrogen bonds as dashed lines.

Fig. 2. Packing diagram of (I), viewed down the *a* axis. Dashed lines indicate N—H···N hydrogen bonds.

4-Methoxybenzaldehyde (phthalazin-1-ylidene)hydrazone

Crystal data	
$C_{16}H_{14}N_4O$	$F_{000} = 1168$
$M_r = 278.31$	$D_{\rm x} = 1.335 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5610 reflections
<i>a</i> = 12.1351 (8) Å	$\theta = 4.632.4^{\circ}$
<i>b</i> = 14.2016 (7) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 16.0716 (8) Å	T = 203 K
$\beta = 90.012 \ (6)^{\circ}$	Chunk, yellow
$V = 2769.7 (3) \text{ Å}^3$	$0.55\times0.41\times0.37~mm$
Z = 8	

Data collection

Oxford Diffraction Gemini R diffractometer	$R_{\rm int} = 0.035$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 32.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 4.6^{\circ}$
T = 203 K	$h = -18 \rightarrow 15$
φ and ω scans	$k = -20 \rightarrow 20$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)	$l = -22 \rightarrow 24$
$T_{\min} = 0.833, T_{\max} = 1.000$	2 standard reflections
19111 measured reflections	every 50 reflections
8720 independent reflections	intensity decay: none
3864 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.180$	$w = 1/[\sigma^2(F_o^2) + (0.0884P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.002$
$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01A	0.15752 (11)	0.62767 (9)	-0.14043 (8)	0.0594 (4)
O1B	-0.24183 (10)	1.16684 (8)	0.30313 (7)	0.0461 (3)
N1A	-0.03360 (11)	0.99989 (10)	0.12664 (9)	0.0438 (4)
N2A	0.06600 (11)	0.97845 (9)	0.09289 (8)	0.0387 (3)
H2AA	0.0711	0.9246	0.0674	0.046*
N3A	0.25209 (11)	1.00864 (9)	0.06025 (8)	0.0380 (3)
N4A	0.24386 (11)	0.92220 (9)	0.01902 (8)	0.0371 (3)
N1B	-0.04553 (11)	0.79403 (9)	0.04541 (9)	0.0420 (3)
N2B	-0.14890 (11)	0.82042 (9)	0.07002 (8)	0.0364 (3)
H2BA	-0.1556	0.8766	0.0910	0.044*
N3B	-0.33832 (11)	0.79568 (9)	0.09271 (8)	0.0375 (3)
N4B	-0.33017 (11)	0.88110 (9)	0.13504 (8)	0.0359 (3)
C1A	-0.04070 (14)	1.07925 (12)	0.16550 (11)	0.0455 (4)
H1AA	-0.1090	1.0952	0.1893	0.055*
C2A	0.04879 (14)	1.14498 (11)	0.17491 (10)	0.0388 (4)
C3A	0.03655 (16)	1.23042 (12)	0.21789 (11)	0.0462 (4)
НЗАА	-0.0317	1.2465	0.2416	0.055*
C4A	0.12422 (17)	1.29002 (12)	0.22514 (10)	0.0481 (5)
H4AA	0.1160	1.3472	0.2540	0.058*
C5A	0.22507 (16)	1.26718 (12)	0.19052 (11)	0.0479 (5)
H5AA	0.2849	1.3087	0.1961	0.057*
C6A	0.23812 (14)	1.18376 (11)	0.14790 (10)	0.0402 (4)
H6AA	0.3068	1.1688	0.1243	0.048*
C7A	0.15041 (13)	1.12177 (10)	0.13965 (9)	0.0321 (4)
C8A	0.15901 (13)	1.03289 (10)	0.09489 (9)	0.0318 (3)
C9A	0.33402 (14)	0.89556 (11)	-0.01453 (9)	0.0375 (4)

H9AA	0.3968	0.9341	-0.0106	0.045*	
C10A	0.34102 (14)	0.80607 (11)	-0.05895 (9)	0.0362 (4)	
C11A	0.24709 (14)	0.75681 (11)	-0.08197 (9)	0.0378 (4)	
H11A	0.1771	0.7822	-0.0707	0.045*	
C12A	0.25592 (15)	0.67071 (12)	-0.12138 (10)	0.0418 (4)	
C13A	0.35773 (16)	0.63304 (13)	-0.13927 (11)	0.0483 (5)	
H13A	0.3635	0.5745	-0.1662	0.058*	
C14A	0.45109 (16)	0.68217 (14)	-0.11715 (12)	0.0544 (5)	
H14A	0.5208	0.6567	-0.1293	0.065*	
C15A	0.44415 (15)	0.76813 (13)	-0.07745 (10)	0.0483 (5)	
H15A	0.5086	0.8009	-0.0629	0.058*	
C16A	0.16018 (19)	0.54019 (14)	-0.18424 (13)	0.0643 (6)	
H16A	0.0855	0.5176	-0.1924	0.096*	
H16B	0.2016	0.4944	-0.1522	0.096*	
H16C	0.1952	0.5492	-0.2379	0.096*	
C1B	-0.03699 (15)	0.71162 (12)	0.01132 (11)	0.0455 (4)	
H1BA	0.0334	0.6919	-0.0057	0.055*	
C2B	-0.12730 (14)	0.64846 (11)	-0.00231 (10)	0.0388 (4)	
C3B	-0.11454 (17)	0.56187 (13)	-0.04278 (11)	0.0511 (5)	
H3BA	-0.0445	0.5427	-0.0611	0.061*	
C4B	-0.20408 (19)	0.50515 (13)	-0.05565 (12)	0.0596 (5)	
H4BA	-0.1955	0.4475	-0.0836	0.072*	
C5B	-0.30724 (18)	0.53223 (13)	-0.02775 (12)	0.0564 (5)	
H5BA	-0.3679	0.4923	-0.0364	0.068*	
C6B	-0.32239 (15)	0.61678 (12)	0.01251 (11)	0.0447 (4)	
H6BA	-0.3927	0.6346	0.0313	0.054*	
C7B	-0.23160 (14)	0.67581 (10)	0.02510 (9)	0.0349 (4)	
C8B	-0.24254 (14)	0.76758 (10)	0.06503 (9)	0.0324 (3)	
C9B	-0.42284 (13)	0.91673 (11)	0.15517 (10)	0.0368 (4)	
H9BA	-0.4881	0.8870	0.1378	0.044*	
C10B	-0.42954 (13)	1.00313 (11)	0.20488 (9)	0.0353 (4)	
C11B	-0.33484 (13)	1.04619 (10)	0.23426 (9)	0.0348 (4)	
H11B	-0.2656	1.0198	0.2223	0.042*	
C12B	-0.34132 (14)	1.12789 (11)	0.28118 (9)	0.0371 (4)	
C13B	-0.44355 (15)	1.16444 (12)	0.30276 (10)	0.0440 (4)	
H13B	-0.4486	1.2178	0.3371	0.053*	
C14B	-0.53719 (15)	1.12146 (12)	0.27317 (11)	0.0473 (4)	
H14B	-0.6065	1.1466	0.2869	0.057*	
C15B	-0.53156 (14)	1.04202 (11)	0.22357 (10)	0.0413 (4)	
H15B	-0.5964	1.0145	0.2027	0.050*	
C16B	-0.24432 (17)	1.25121 (12)	0.35107 (12)	0.0554 (5)	
H16D	-0.1695	1.2716	0.3625	0.083*	
H16E	-0.2824	1.2396	0.4031	0.083*	
H16F	-0.2827	1.2999	0.3202	0.083*	
	.2				
Atomic displacement	Atomic displacement parameters (A^2)				

 U^{11} U^{22} U^{33} U^{12} U^{13} U^{23}

O1A	0.0544 (8)	0.0535 (8)	0.0702 (9)	0.0068 (6)	-0.0055 (7)	-0.0259 (7)
O1B	0.0552 (8)	0.0388 (7)	0.0444 (7)	0.0024 (5)	-0.0011 (6)	-0.0124 (5)
N1A	0.0339 (8)	0.0406 (8)	0.0568 (9)	0.0036 (6)	0.0016 (7)	-0.0031 (7)
N2A	0.0384 (8)	0.0336 (7)	0.0442 (8)	0.0006 (6)	-0.0021 (6)	-0.0063 (6)
N3A	0.0444 (8)	0.0318 (7)	0.0377 (7)	-0.0023 (6)	0.0053 (7)	-0.0001 (6)
N4A	0.0457 (8)	0.0304 (7)	0.0352 (7)	0.0014 (6)	0.0018 (7)	-0.0002 (6)
N1B	0.0406 (8)	0.0409 (8)	0.0444 (8)	0.0013 (6)	0.0010 (7)	-0.0027 (7)
N2B	0.0416 (8)	0.0291 (7)	0.0384 (7)	-0.0002 (6)	0.0007 (6)	-0.0060 (6)
N3B	0.0449 (8)	0.0278 (7)	0.0397 (7)	-0.0052 (6)	-0.0018 (7)	-0.0052 (6)
N4B	0.0420 (8)	0.0293 (7)	0.0364 (7)	-0.0016 (6)	0.0020 (6)	-0.0021 (6)
C1A	0.0375 (10)	0.0399 (10)	0.0590 (11)	0.0028 (7)	0.0069 (9)	-0.0013 (9)
C2A	0.0446 (10)	0.0361 (9)	0.0358 (8)	0.0013 (7)	0.0003 (8)	0.0011 (7)
C3A	0.0577 (12)	0.0382 (10)	0.0427 (9)	0.0060 (8)	0.0066 (9)	-0.0028 (8)
C4A	0.0706 (13)	0.0343 (9)	0.0395 (9)	0.0018 (9)	-0.0022 (9)	-0.0064 (8)
C5A	0.0605 (12)	0.0364 (10)	0.0468 (10)	-0.0089 (8)	-0.0087 (9)	-0.0029 (8)
C6A	0.0433 (10)	0.0377 (9)	0.0397 (9)	-0.0034 (7)	-0.0033 (8)	0.0006 (7)
C7A	0.0381 (9)	0.0296 (8)	0.0286 (7)	-0.0001 (6)	-0.0034 (7)	0.0025 (6)
C8A	0.0379 (9)	0.0288 (8)	0.0286 (7)	0.0004 (6)	-0.0043 (7)	0.0033 (6)
C9A	0.0447 (10)	0.0349 (9)	0.0330 (8)	-0.0030(7)	0.0078 (8)	0.0055 (7)
C10A	0.0431 (10)	0.0369 (9)	0.0287 (8)	0.0024 (7)	0.0046 (7)	0.0062 (7)
C11A	0.0407 (10)	0.0390 (9)	0.0336 (8)	0.0096 (7)	0.0016 (7)	-0.0034 (7)
C12A	0.0488 (11)	0.0432 (10)	0.0334 (8)	0.0079 (8)	-0.0026 (8)	-0.0028 (7)
C13A	0.0573 (12)	0.0465 (10)	0.0411 (9)	0.0161 (9)	0.0011 (9)	-0.0050 (8)
C14A	0.0453 (11)	0.0659 (13)	0.0519 (11)	0.0192 (10)	0.0091 (9)	-0.0098 (10)
C15A	0.0428 (11)	0.0563 (11)	0.0460 (10)	0.0064 (8)	0.0063 (9)	0.0006 (9)
C16A	0.0768 (15)	0.0559 (13)	0.0602 (12)	0.0015 (10)	-0.0052 (12)	-0.0202 (10)
C1B	0.0467 (11)	0.0406 (10)	0.0492 (10)	0.0066 (8)	0.0007 (9)	-0.0011 (8)
C2B	0.0523 (11)	0.0289 (8)	0.0351 (8)	0.0064 (7)	-0.0035 (8)	-0.0014 (7)
C3B	0.0660 (13)	0.0399 (10)	0.0474 (10)	0.0152 (9)	-0.0080 (10)	-0.0077 (8)
C4B	0.0843 (15)	0.0346 (10)	0.0599 (12)	0.0097 (10)	-0.0186 (11)	-0.0145 (9)
C5B	0.0717 (14)	0.0362 (10)	0.0611 (12)	-0.0089 (9)	-0.0153 (11)	-0.0062 (9)
C6B	0.0523 (11)	0.0340 (9)	0.0477 (10)	-0.0044 (8)	-0.0062 (9)	-0.0058 (8)
C7B	0.0476 (10)	0.0285 (8)	0.0285 (7)	-0.0003 (7)	-0.0057 (7)	-0.0005 (6)
C8B	0.0436 (10)	0.0275 (8)	0.0261 (7)	-0.0018 (7)	-0.0038 (7)	0.0003 (6)
C9B	0.0376 (9)	0.0318 (8)	0.0411 (9)	-0.0063 (7)	0.0022 (8)	0.0041 (7)
C10B	0.0429 (9)	0.0297 (8)	0.0332 (8)	0.0031 (7)	0.0087 (7)	0.0049 (6)
C11B	0.0371 (9)	0.0319 (8)	0.0355 (8)	0.0040 (7)	0.0053 (7)	-0.0022 (7)
C12B	0.0501 (10)	0.0306 (8)	0.0306 (8)	0.0040 (7)	0.0019 (8)	0.0009 (6)
C13B	0.0617 (12)	0.0336 (9)	0.0367 (9)	0.0147 (8)	0.0069 (9)	-0.0012 (7)
C14B	0.0466 (11)	0.0460 (10)	0.0492 (10)	0.0136 (8)	0.0087 (9)	0.0037 (9)
C15B	0.0360 (9)	0.0434 (10)	0.0446 (9)	-0.0003 (7)	0.0037 (8)	0.0068 (8)
C16B	0.0767 (14)	0.0413 (10)	0.0481 (10)	0.0024 (9)	-0.0030 (10)	-0.0179 (8)
					~ /	. /

Geometric parameters (Å, °)

1.376 (2)	C12A—C13A	1.377 (2)
1.428 (2)	C13A—C14A	1.377 (3)
1.3740 (19)	C13A—H13A	0.9400
1.4248 (19)	C14A—C15A	1.380 (2)
	1.376 (2) 1.428 (2) 1.3740 (19) 1.4248 (19)	1.376 (2) C12A—C13A 1.428 (2) C13A—C14A 1.3740 (19) C13A—H13A 1.4248 (19) C14A—C15A

N1A—C1A	1.291 (2)	C14A—H14A	0.9400
N1A—N2A	1.3594 (17)	C15A—H15A	0.9400
N2A—C8A	1.369 (2)	С16А—Н16А	0.9700
N2A—H2AA	0.8700	C16A—H16B	0.9700
N3A—C8A	1.3056 (19)	C16A—H16C	0.9700
N3A—N4A	1.3985 (17)	C1B—C2B	1.433 (2)
N4A—C9A	1.2771 (19)	C1B—H1BA	0.9400
N1B—C1B	1.296 (2)	C2B—C7B	1.395 (2)
N1B—N2B	1.3678 (18)	C2B—C3B	1.400 (2)
N2B—C8B	1.3640 (19)	C3B—C4B	1.368 (3)
N2B—H2BA	0.8700	СЗВ—НЗВА	0.9400
N3B—C8B	1.307 (2)	C4B—C5B	1.384 (3)
N3B—N4B	1.3943 (17)	C4B—H4BA	0.9400
N4B—C9B	1.2750 (19)	C5B—C6B	1.376 (2)
C1A—C2A	1.440 (2)	С5В—Н5ВА	0.9400
C1A—H1AA	0.9400	C6B—C7B	1.399 (2)
C2A—C7A	1.397 (2)	C6B—H6BA	0.9400
C2A—C3A	1.404 (2)	C7B—C8B	1.459 (2)
C3A—C4A	1 364 (3)	C9B—C10B	1 466 (2)
СЗА—НЗАА	0.9400	C9B—H9BA	0.9400
C4A—C5A	1.383 (3)	C10B—C11B	1.385 (2)
C4A—H4AA	0 9400	C10B—C15B	1 388 (2)
C5A—C6A	1.378 (2)	C11B-C12B	1.386 (2)
С5А—Н5АА	0.9400	C11B—H11B	0.9400
C6A—C7A	1.388 (2)	C12B—C13B	1.389 (2)
С6А—Н6АА	0.9400	C13B—C14B	1.375 (2)
C7A—C8A	1.457 (2)	C13B—H13B	0.9400
C9A - C10A	1 460 (2)	C14B—C15B	1 383 (2)
С9А—Н9АА	0.9400	C14B—H14B	0.9400
C10A—C11A	1 387 (2)	C15B—H15B	0.9400
C10A— $C15A$	1 395 (2)	C16B—H16D	0 9700
C11A—C12A	1 381 (2)	C16B—H16E	0.9700
C11A—H11A	0.9400	C16B—H16F	0.9700
	110 45 (15)		120.2
C12A = O1A = C16A	110.43(13) 117.20(12)	CIOA - CISA - HISA	120.2
C12D - O1B - C10D	117.50 (15)	O1A = C16A = H16R	109.5
NIA NZA CRA	110.01(14) 126.68(12)		109.5
NIA N2A U2AA	120.08 (13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
NIA - NZA - HZAA	110.7		109.5
C8A = N2A = H2AA	110.7	H10A - C10A - H10C	109.5
C8A - N3A - N4A	111.83 (13)	HI0B-CI0A-HI0C	109.5 124.64.(17)
CIP NID NOD	115.51 (14)	NIB-CIB-C2B	124.04 (17)
CID—NID—NZB	110.50(14) 126.61(12)	NID-CID-HIDA	117.7
C8D-N2D-N1D	120.01 (13)	$C_{2}D = C_{1}D = D_{1}D_{2}D_{2}$	117.7
C8B-N2B-H2BA	110.7	C/B = C2B = C3B	119.45 (16)
INID-INZB-IIZBA	110./	$C_{D} = C_{2B} = C_{1B}$	118.11(14) 122.42(17)
COD NAD N2D	111.05 (15)	$C_{3D} = C_{2D} = C_{1D}$	122.43(17) 110.07(19)
$V_{2}D - N_{2}D - N_{2}D$	113.99 (13)	C4D = C2D = U2DA	119.97 (18) 120.0
$\mathbf{N}\mathbf{I}\mathbf{A} = \mathbf{C}\mathbf{I}\mathbf{A} = \mathbf{U}\mathbf{I}\mathbf{A}\mathbf{A}$	124.48 (10)	$C_{4}D - C_{3}D - H_{3}DA$	120.0
NIA-UIA-HIAA	11/.8	С2В—СЗВ—НЗВА	120.0

C2A—C1A—H1AA	117.8	C3B—C4B—C5B	120.37 (17)
C7A—C2A—C3A	119.81 (16)	СЗВ—С4В—Н4ВА	119.8
C7A—C2A—C1A	118.05 (15)	C5B—C4B—H4BA	119.8
C3A—C2A—C1A	122.14 (16)	C6B—C5B—C4B	121.03 (18)
C4A—C3A—C2A	119.70 (17)	C6B—C5B—H5BA	119.5
С4А—С3А—НЗАА	120.1	C4B—C5B—H5BA	119.5
С2А—С3А—НЗАА	120.1	C5B—C6B—C7B	119.05 (18)
C3A—C4A—C5A	120.68 (16)	С5В—С6В—Н6ВА	120.5
СЗА—С4А—Н4АА	119.7	С7В—С6В—Н6ВА	120.5
C5A—C4A—H4AA	119.7	C2B—C7B—C6B	120.11 (15)
C6A—C5A—C4A	120.23 (17)	C2B—C7B—C8B	118.05 (14)
С6А—С5А—Н5АА	119.9	C6B—C7B—C8B	121.82 (16)
С4А—С5А—Н5АА	119.9	N3B—C8B—N2B	123.57 (14)
C5A—C6A—C7A	120.32 (17)	N3B—C8B—C7B	120.23 (14)
С5А—С6А—Н6АА	119.8	N2B—C8B—C7B	116.20 (14)
С7А—С6А—Н6АА	119.8	N4B—C9B—C10B	121.29 (15)
C6A—C7A—C2A	119.26 (15)	N4B—C9B—H9BA	119.4
C6A—C7A—C8A	122.82 (15)	С10В—С9В—Н9ВА	119.4
C2A—C7A—C8A	117.92 (14)	C11B—C10B—C15B	119.38 (15)
N3A—C8A—N2A	123.68 (14)	C11B—C10B—C9B	120.61 (14)
N3A—C8A—C7A	120.08 (14)	C15B—C10B—C9B	120.01 (15)
N2A—C8A—C7A	116.23 (14)	C10B—C11B—C12B	120.53 (15)
N4A—C9A—C10A	120.94 (15)	C10B—C11B—H11B	119.7
N4A—C9A—H9AA	119.5	C12B—C11B—H11B	119.7
С10А—С9А—Н9АА	119.5	O1B—C12B—C11B	115.26 (14)
C11A—C10A—C15A	119.05 (15)	O1B—C12B—C13B	124.77 (15)
C11A—C10A—C9A	121.42 (15)	C11B—C12B—C13B	119.96 (16)
C15A—C10A—C9A	119.52 (16)	C14B—C13B—C12B	119.09 (16)
C12A—C11A—C10A	120.31 (16)	C14B—C13B—H13B	120.5
C12A—C11A—H11A	119.8	C12B—C13B—H13B	120.5
C10A—C11A—H11A	119.8	C13B—C14B—C15B	121.37 (16)
O1A—C12A—C13A	124.04 (16)	C13B—C14B—H14B	119.3
O1A—C12A—C11A	115.33 (15)	C15B—C14B—H14B	119.3
C13A—C12A—C11A	120.63 (17)	C14B—C15B—C10B	119.56 (16)
C12A—C13A—C14A	119.18 (17)	C14B—C15B—H15B	120.2
C12A—C13A—H13A	120.4	C10B—C15B—H15B	120.2
C14A—C13A—H13A	120.4	O1B—C16B—H16D	109.5
C13A—C14A—C15A	121.15 (17)	O1B—C16B—H16E	109.5
C13A—C14A—H14A	119.4	H16D—C16B—H16E	109.5
C15A—C14A—H14A	119.4	O1B—C16B—H16F	109.5
C14A—C15A—C10A	119.68 (18)	H16D—C16B—H16F	109.5
C14A—C15A—H15A	120.2	H16E—C16B—H16F	109.5
C1A—N1A—N2A—C8A	-1.0 (2)	C11A—C10A—C15A—C14A	-0.8 (2)
C8A—N3A—N4A—C9A	-178.96 (13)	C9A—C10A—C15A—C14A	178.01 (15)
C1B—N1B—N2B—C8B	2.6 (2)	N2B—N1B—C1B—C2B	0.5 (2)
C8B—N3B—N4B—C9B	172.58 (13)	N1B—C1B—C2B—C7B	-2.0 (3)
N2A—N1A—C1A—C2A	0.1 (3)	N1B—C1B—C2B—C3B	177.08 (15)
N1A—C1A—C2A—C7A	0.1 (3)	C7B—C2B—C3B—C4B	0.4 (3)
N1A—C1A—C2A—C3A	-179.98 (16)	C1B—C2B—C3B—C4B	-178.65 (17)

C7A—C2A—C3A—C4A	-0.2 (2)	C2B—C3B—C4B—C5B	-1.0 (3)
C1A—C2A—C3A—C4A	179.81 (16)	C3B—C4B—C5B—C6B	0.7 (3)
C2A—C3A—C4A—C5A	0.0 (3)	C4B—C5B—C6B—C7B	0.0 (3)
C3A—C4A—C5A—C6A	0.2 (3)	C3B—C2B—C7B—C6B	0.3 (2)
C4A—C5A—C6A—C7A	-0.3 (2)	C1B—C2B—C7B—C6B	179.45 (15)
C5A—C6A—C7A—C2A	0.1 (2)	C3B—C2B—C7B—C8B	-178.37 (13)
C5A—C6A—C7A—C8A	179.61 (14)	C1B—C2B—C7B—C8B	0.7 (2)
C3A—C2A—C7A—C6A	0.2 (2)	C5B—C6B—C7B—C2B	-0.6 (2)
C1A—C2A—C7A—C6A	-179.89 (15)	C5B—C6B—C7B—C8B	178.09 (14)
C3A—C2A—C7A—C8A	-179.37 (14)	N4B—N3B—C8B—N2B	-6.1 (2)
C1A—C2A—C7A—C8A	0.6 (2)	N4B—N3B—C8B—C7B	174.81 (12)
N4A—N3A—C8A—N2A	1.8 (2)	N1B—N2B—C8B—N3B	177.24 (14)
N4A—N3A—C8A—C7A	-178.92 (12)	N1B—N2B—C8B—C7B	-3.7 (2)
N1A—N2A—C8A—N3A	-179.13 (14)	C2B—C7B—C8B—N3B	-179.08 (14)
N1A—N2A—C8A—C7A	1.6 (2)	C6B—C7B—C8B—N3B	2.2 (2)
C6A—C7A—C8A—N3A	-0.1 (2)	C2B—C7B—C8B—N2B	1.8 (2)
C2A—C7A—C8A—N3A	179.37 (13)	C6B—C7B—C8B—N2B	-176.90 (14)
C6A—C7A—C8A—N2A	179.17 (14)	N3B-N4B-C9B-C10B	175.84 (12)
C2A—C7A—C8A—N2A	-1.3 (2)	N4B-C9B-C10B-C11B	-2.7 (2)
N3A—N4A—C9A—C10A	178.92 (12)	N4B-C9B-C10B-C15B	177.89 (14)
N4A-C9A-C10A-C11A	14.1 (2)	C15B-C10B-C11B-C12B	-0.7 (2)
N4A—C9A—C10A—C15A	-164.71 (15)	C9B-C10B-C11B-C12B	179.95 (13)
C15A—C10A—C11A—C12A	1.1 (2)	C16B—O1B—C12B—C11B	179.70 (14)
C9A—C10A—C11A—C12A	-177.74 (13)	C16B—O1B—C12B—C13B	-0.4 (2)
C16A—O1A—C12A—C13A	-2.5 (3)	C10B—C11B—C12B—O1B	-176.73 (13)
C16A—O1A—C12A—C11A	177.52 (15)	C10B-C11B-C12B-C13B	3.4 (2)
C10A-C11A-C12A-O1A	179.25 (14)	O1B-C12B-C13B-C14B	176.61 (14)
C10A—C11A—C12A—C13A	-0.8 (2)	C11B-C12B-C13B-C14B	-3.5 (2)
O1A-C12A-C13A-C14A	-179.82 (16)	C12B-C13B-C14B-C15B	1.0 (3)
C11A—C12A—C13A—C14A	0.2 (3)	C13B—C14B—C15B—C10B	1.7 (2)
C12A—C13A—C14A—C15A	0.1 (3)	C11B—C10B—C15B—C14B	-1.9 (2)
C13A—C14A—C15A—C10A	0.3 (3)	C9B—C10B—C15B—C14B	177.52 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2A—H2AA…N1B	0.87	2.36	3.0451 (19)	136
N2B—H2BA…N1A	0.87	2.36	3.0466 (19)	136

Fig. 1

